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This is an excerpt from the book Fundamentals of Machine Learning for Predictive Data
Analytics: Algorithms, Worked Examples, and Case Studies by John D. Kelleher, Brian Mac
Namee, and Aoife D’ Arcy published by The MIT Press in 2015.

Machine learning is often used to build predictive models by extracting patterns from large
datasets. These models are used in predictive data analytics applications including price prediction,
risk assessment, predicting customer behavior, and document classification. This introductory text-
book offers a detailed and focused treatment of the most important machine learning approaches
used in predictive data analytics, covering both theoretical concepts and practical applications.
Technical and mathematical material is augmented with explanatory worked examples, and case
studies illustrate the application of these models in the broader business context.

After discussing the trajectory from data to insight to decision, the book describes four approaches
to machine learning: information-based learning, similarity-based learning, probability-based
learning, and error-based learning. Each of these approaches is introduced by a nontechnical expla-
nation of the underlying concept, followed by mathematical models and algorithms illustrated by
detailed worked examples. Finally, the book considers techniques for evaluating prediction mod-
els and offers two case studies that describe specific data analytics projects through each phase
of development, from formulating the business problem to implementation of the analytics solu-
tion. The book, informed by the authors many years of teaching machine learning, and working
on predictive data analytics projects, is suitable for use by undergraduates in computer science,
engineering, mathematics, or statistics; by graduate students in disciplines with applications for
predictive data analytics; and as a reference for professionals.

This extract is the first part of a chapter on Information-based Learning. In this extract a non-
technical explanation of the concepts underlying information-based learning are followed by the
fundamental mathematical ideas used and the standard approach to using information theory to
build predictive models.
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4 Information-based Learning

Information is the resolution of uncertainty.
—Claude Elwood Shannon

In this chapter we discuss the ways in which concepts from information the-
ory can be used to build prediction models. We start by discussing decision
trees, the fundamental structure used in information-based machine learning,
before presenting the fundamental measures of information content that are
used: entropy and information gain. We then present the ID3 algorithm, the
standard algorithm used to induce a decision tree from a dataset. The exten-
sions and variations to this standard approach that we present describe how
different data types can be handled, how overfitting can be avoided using deci-
sion tree pruning, and how multiple prediction models can be combined in
ensembles to improve prediction accuracy.

4.1 BigIdea

We’ll start off by playing a game. Guess Who is a two-player game in which
one player chooses a card with a picture of a character on it from a deck and
the other player tries to guess which character is on the card by asking a series
of questions to which the answer can only be yes or no. The player asking
the questions wins by guessing who is on the card within a small number of
questions and loses otherwise. Figure 4.1® shows the set of cards that we will
use for our game. We can represent these cards using the dataset given in Table
4.1%,

Now, imagine that we have picked one of these cards and you have to guess
which one by asking questions. Which of the following questions would you
ask first?

1. Isitaman?

2. Does the person wear glasses?

Most people would ask Question 1 first. Why is this? At first, this choice
of question might seem ineffective. For example, if you ask Question 2, and
we answer yes, you can be sure that we have picked Brian without asking any
more questions. The problem with this reasoning, however, is that, on average,
the answer to Question 2 will be yes only one out of every four times you play.
That means that three out of every four times you ask Question 2, the answer
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Figure 4.1

Cards showing character faces and names for the Guess Who game.

Table 4.1

A dataset that represents the characters in the Guess Who game.
Man Long Hair Glasses Name
Yes No Yes Brian
Yes No No John
No Yes No Aphra
No No No Aoife

will be no, and you will still have to distinguish between the three remaining
characters.

Figure 4.2" illustrates the possible question sequences that can follow in a
game beginning with Question 2. In Figure 4.2(a)” we next ask, Is it a man?
and then, if required, Do they have long hair? In Figure 4.2(b)"" we reverse
this order. In both of these diagrams, one path to an answer about the character
on a card is 1 question long, one path is 2 questions long, and two paths are 3
questions long. Consequently, if you ask Question 2 first, the average number
of questions you have to ask per game is

1+24+3+3
4

On the other hand, if you ask Question 1 first, there is only one sequence
of questions with which to follow it. This sequence is shown in Figure 4.3".
Irrespective of the answers to the questions, you always have to follow a path
through this sequence that is 2 questions long to reach an answer about the
character on a card. This means that if you always ask Question 1 first, the
average number of questions you have to ask per game is

2+2+2—|—272
1 =

=225
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Figure 4.2

The different question sequences that can follow in a game of Guess Who beginning with the
question Does the person wear glasses?

What is interesting here is that no matter what question you ask, the answer
is always either yes or no, but, on average, an answer to Question 1 seems to
carry more information than an answer to Question 2. This is not because of
the literal message in the answer (either yes or no). Rather, it is because of the
way that the answer to each question splits the character cards into different
sets based on the value of the descriptive feature the question is asked about
(MAN, LONG HAIR or GLASSES) and the likelihood of each possible answer
to the question.

An answer to Question 1, Is it a man?, splits the game domain into two sets
of equal size: one containing Brian and John and one containing Aphra and
Aoife. One of these sets contains the solution, which leaves you with just one
more question to ask to finish the game. By contrast, an answer to Question 2
splits the game domain into one set containing one element, Brian, and another
set containing three elements: John, Aphra, and Aoife. This works out really
well when the set containing the single element contains the solution. In the
more likely case that the set containing three elements contains the solution,
however, you may have to ask two more questions to uniquely identify the
answer. So, when you consider both the likelihood of an answer and how an
answer splits up the domain of solutions, it becomes clear that an answer to
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Figure 4.3

The different question sequences that can follow in a game of Guess Who beginning with the
question Is it a man?

Question 2 leaves you with more work to do to solve the game than an answer
to Question 1.

So, the big idea here is to figure out which features are the most informative
ones to ask questions about by considering the effects of the different answers
to the questions, in terms of how the domain is split up after the answer is
received and the likelihood of each of the answers. Somewhat surprisingly,
people seem to be able to easily do this based on intuition. Information-based
machine learning algorithms use the same idea. These algorithms determine
which descriptive features provide the most information about a target fea-
ture and make predictions by sequentially testing the features in order of their
informativeness.

4.2 Fundamentals

In this section we introduce Claude Shannon’s approach to measuring informa-
tion,! in particular his model of entropy and how it is used in the information

1 Claude Shannon is considered to be the father of information theory. Shannon worked for AT&T
Bell Labs, where he worked on the efficient encoding of messages for telephone communication. It
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Table 4.2
An email spam prediction dataset.

SUSPICIOUS UNKNOWN CONTAINS
ID WORDS SENDER IMAGES CLASS
376 true false true spam
489 true true false spam
541 true true false spam
693 false true true ham
782 false false false ham
976 false false false ham

gain measure to capture the informativeness of a descriptive feature. Before
this we introduce decision trees, the actual prediction models that we are try-
ing to build.

4.2.1 Decision Trees

Just as we did when we played Guess Who, an effective way to generate a pre-
diction is to carry out a series of tests on the values of the descriptive features
describing a query instance, and use the answers to these tests to determine
the prediction. Decision trees take this approach. To illustrate how a decision
tree works, we will use the dataset listed in Table 4.2"'. This dataset contains
a set of training instances that can be used to build a model to predict whether
emails are spam or ham (genuine). The dataset has three binary descriptive
features: SUSPICIOUS WORDS is frue if an email contains one or more words
that are typically found in spam email (e.g., casino, viagra, bank, or account);
UNKNOWN SENDER is true if the email is from an address that is not listed in
the contacts of the person who received the email; and CONTAINS IMAGES is
true if the email contains one or more images.

Figure 4.4 shows two decision trees that are consistent with the spam
dataset. Decision trees look very like the game trees that we developed for the
Guess Who game. As with all tree representations, a decision tree consists of
a root node (or starting node), interior nodes, and leaf nodes (or terminating
nodes) that are connected by branches. Each non-leaf node (root and interior)

was this focus on encoding that motivated his approach to measuring information. In information
theory, the meaning of the word information deliberately excludes the psychological aspects of the
communication and should be understood as measuring the optimal encoding length of a message
given the set of possible messages that could be sent within the communication.
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in the tree specifies a test to be carried out on a descriptive feature. The number
of possible levels that a descriptive feature can take determines the number of
downward branches from a non-leaf node. Each of the leaf nodes specifies a
predicted level of the target feature.

In the diagrams in Figure 4.4, ellipses represent root or interior nodes,
and rectangles represent leaf nodes. The labels of the ellipses indicate which
descriptive feature is tested at that node. The labels on the each branch indicate
one of the possible feature levels that the descriptive feature at the node above
can take. The labels on the rectangular leaf nodes indicate the target level that
should be predicted when the tests on the interior nodes create a path that
terminates at that leaf node.

Figure 4.4

Two decision trees (a) and (b) that are consistent with the instances in the spam dataset; (c) the
path taken through the tree shown in (a) to make a prediction for the query instance SUSPICIOUS
WORDS = true, UNKNOWN SENDER = true, CONTAINS IMAGES = true.

The process of using a decision tree to make a prediction for a query instance
starts by testing the value of the descriptive feature at the root node of the tree.
The result of this test determines which of the root node’s children the process
should then descend to. These two steps of testing the value of a descriptive
feature and descending a level in the tree are then repeated until the process
comes to a leaf node at which a prediction can be made.

To demonstrate how this process works, imagine we were given the query
email SUSPICIOUS WORDS = frue, UNKNOWN SENDER = true, CONTAINS
IMAGES = frue, and asked to predict whether it is spam or ham. Applying the
decision tree from Figure 4.4(a)” to this query, we see that the root node of
this tree tests the CONTAINS IMAGES feature. The query instance value for
CONTAINS IMAGES is true so the process descends the left branch from the
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root node, labeled frue, to an interior node that tests the SUSPICIOUS WORDS
feature. The query instance value for this feature is true, so based on the result
of the test at this node, the process descends the left branch, labeled frue, to a
leaf node labeled spam. As the process has arrived at a leaf node, it terminates,
and the target level indicated by the leaf node, spam, is predicted for the query
instance. The path through the decision tree for this query instance is shown in
figure 4.4(c)".

The decision tree in Figure 4.4(b)" would have returned the same prediction
for the query instance. Indeed, both of the decision trees in Figures 4.4(a)""
and 4.4(b)" are consistent with the dataset in Table 4.2 and can generalize
sufficiently to make predictions for query instances like the one considered in
our example. The fact that there are, at least, two decision trees that can do this
raises the question: How do we decide which is the best decision tree to use?

We can apply almost the same approach that we used in the Guess Who
game to make this decision. Looking at the decision trees in Figures 4.4(a)"
and 4.4(b)", we notice that the tree in Figure 4.4(a)' performs tests on two fea-
tures in order to make a prediction, while the decision tree in Figure 4.4(b)"
only ever needs to test the value of one feature. The reason for this is that
SUSPICIOUS WORDS, the descriptive feature tested at the root node of the tree
in Figure 4.4(b)"", perfectly splits the data into a pure group of spam emails
and a pure group of ham emails. We can say that because of the purity of the
splits that it makes, the SUSPICIOUS WORDS feature provides more informa-
tion about the value of the target feature for an instance than the CONTAINS
IMAGES feature, so a tree that tests this descriptive feature at the root node is
preferable.

This gives us a way to choose between a set of different decision trees that
are all consistent with a set of training instances. We can introduce a preference
for decision trees that use fewer tests, in other words, trees that are on average
shallower.? This is the primary inductive bias that a machine learning algo-
rithm taking an information-based approach encodes. To build shallow trees,
we need to put the descriptive features that best discriminate between instances
that have different target feature values toward the top of the tree. To do this we
need a formal measure of how well a descriptive feature discriminates between

2 In fact, it can be argued that a preference toward shallower decision trees is a good idea in
general and can be viewed as following Occam’s razor. Occam’s razor is the principle of keeping
theories as simple as possible. It is named after a fourteenth century Franciscan monk, William
of Occam (sometimes spelled Ockham), who was one of the first to formulate this principle. The
razor in the title comes from the idea of shaving off any unnecessary assumptions from a theory.
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the levels of the target feature. Similar to the way we analyzed the questions in
the Guess Who game, we will measure the discriminatory power of a descrip-
tive feature by analyzing the size and probability of each set of instances cre-
ated when we test the value of the feature and how pure each set of instances is
with respect to the target feature values of the instances it contains. The formal
measure we will use to do this is Shannon’s entropy model.

4.2.2 Shannon’s Entropy Model

Claude Shannon’s entropy model defines a computational measure of the
impurity of the elements in a set. Before we examine the mathematical def-
inition of entropy, we will first provide an intuitive explanation of what it
means. Figure 4.5 illustrates a collection of sets of playing cards of contrast-
ing entropy. An easy way to understand the entropy of a set is to think in terms
of the uncertainty associated with guessing the result if you were to make a
random selection from the set. For example, if you were to randomly select a
card from the set in Figure 4.5(a)"”’, you would have zero uncertainty, as you
would know for sure that you would select an ace of spades. So, this set has
zero entropy. If, however, you were to randomly select an element from the set
in Figure 4.5(f)”, you would be very uncertain about any prediction as there
are twelve possible outcomes, each of which is equally likely. This is why this
set has very high entropy. The other sets in Figure 4.5 have entropy values
between these two extremes.

This gives us a clue as to how we should define a computational model of
entropy. We can transform the probabilities® of the different possible outcomes
when we randomly select an element from a set to entropy values. An outcome
with a large probability should map to a low entropy value, while an outcome
with a small probability should map to a large entropy value. The mathematical
logarithm, or log, function* does almost exactly the transformation that we
need.

If we examine the graph of the binary logarithm (a logarithm to the base
2) of probabilities ranging from O to 1 in Figure 4.6(a)"", we see that the loga-
rithm function returns large negative numbers for low probabilities, and small

3 We use some simple elements of probability theory in this chapter. Readers unfamiliar with the
way probabilities are calculated based on the relative frequencies of events should read the first
section of Appendix ??!**! before continuing with this chapter.

4 The log of a to the base b, written as logp(a), is the number to which we must raise b to get a.
For example, log,(8) = 3 because 2 = 8 and logs(625) = 4 because 5% = 625.
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Figure 4.5
The entropy of different sets of playing cards measured in bits.

negative numbers for high probabilities. Ignoring the fact that the logarithm
function returns negative numbers, the magnitude of the numbers it returns is
ideal as a measure of entropy: large numbers for low probabilities and small
numbers (near zero) for high probabilities. It should also be noted that the
range of values for the binary logarithm of a probability, [—o0,0], is much
larger than those taken by the probability itself [0, 1]. This is also an attrac-
tive characteristic of this function. It will be more convenient for us to convert
the output of the log function to positive numbers by multiplying them by —1.
Figure 4.6(b)"" shows the impact of this.

Shannon’s model of entropy is a weighted sum of the logs of the probabil-
ities of each possible outcome when we make a random selection from a set.
The weights used in the sum are the probabilities of the outcomes themselves
so that outcomes with high probabilities contribute more to the overall entropy
of a set than outcomes with low probabilities. Shannon’s model of entropy is
defined as

1
H(t) = = Y (P(t = i) x logs(P(t = i))) .1
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(a) A graph illustrating how the value of a binary log (the log to the base 2) of a probability changes
across the range of probability values; (b) the impact of multiplying these values by —1.

where P(f = i) is the probability that the outcome of randomly selecting an
element ¢ is the type i, [ is the number of different types of things in the set,
and s is an arbitrary logarithmic base. The minus sign at the beginning of the
equation is simply added to convert the negative numbers returned by the log
function to positive ones (as described above). We will always use 2 as the
base, s, when we calculate entropy, which means that we measure entropy in
bits.’ Equation (4.1)" is the cornerstone of modern information theory and
is an excellent measure of the impurity, heterogeneity, of a set.

To understand how Shannon’s entropy model works, consider the example
of a set of 52 different playing cards. The probability of randomly selecting
any specific card i from this set, P(card = i), is quite low, just 5L2 The entropy

5 Using binary logs, the maximum entropy for a set with two types of elements is 1.00 bit, but the
entropy for a set with more than two types of elements may be greater than 1.00 bit. The choice
of base when using Shannon’s model in the context that it will be used later in this chapter is
arbitrary. The choice of base 2 is partly due to a conventional computer science background and
partly because it allows us to use the bits unit of information.
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of the set of 52 playing cards is calculated as

52
H(card) = — ZP(card = 1) x loga(P(card = i))
i=1
52
— 10,019 x log>(0.019)

i=1

52

=— Z —0.1096
i=1

= 5.700 bits

In this calculation, for each possible card Shannon’s model multiplies a small
probability, P(card) = i, by a large negative number, logs (P(card) = i), result-
ing in a relatively large negative number. The individual relatively large neg-
ative numbers calculated for each card are then summed to return one large
negative number. The sign of this is inverted to give a large positive value for
the entropy of this very impure set.

By contrast, consider the example of calculating the entropy of a set of 52
playing cards if we only distinguish between cards based on their suit (hearts
¥, clubs ¥, diamonds 4 or, spades #). This time there are only 4 possible
outcomes when a random card is selected from this set, each with a reasonably
large probability of % The entropy associated with this set can be calculated
as

H(suit) = — Z P(suit = 1) x log(P(suit = 1))
nmry
= — ((P(¥) x log2(P(¥))) + (P(#) x logz(P(+)))

+ (P(®) x loga(P(#))) + (P(#) x logz(P(#))))
= - ((13/52 X 1082(13/52)) + (13/52 x 10g2(13/52))
+ (13/52 X 1032(13/52)) + (13/52 x 10g2(13/52)>)

—((0.25 x —2) + (0.25 x —2) + (0.25 x —2) + (0.25 x —2))
2 bits

In this calculation Shannon’s model multiples the large probability of selecting
a specific suit, P(suit = [), by a small negative number, log, (P(suit = [)), to
return a relatively small negative number. The relatively small negative num-
bers associated with each suit are summed to result in a small negative number
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overall. Again, the sign of this number is inverted to result in a small positive
value for the entropy of this much purer set.

To further explore the entropy, we can return to look at the entropy values
of each set of cards shown in Figure 4.5"". In the set in Figure 4.5(a)", all the
cards are identical. This means that there is no uncertainty as to the result when
a selection is made from this set. Shannon’s model of information is designed
to reflect this intuition, and the entropy value for this set is 0.00 bits. In the
sets in Figures 4.5(b)” and 4.5(c)", there is a mixture of two different types
of cards, so these have higher entropy values, in these instances, 0.81 bits and
1.00 bit. The maximum entropy for a set with two types of elements is 1.00 bit,
which occurs when there are equal numbers of each type in the set.

The sets in Figures 4.5(d)*" and 4.5(e)” both have three types of cards. The
maximum entropy for sets with three elements is 1.58 and occurs when there
are equal numbers of each type in the set, as is the case in Figure 4.5(e)”. In
Figure 4.5(d)” one card type is more present than the others, so the overall
entropy is slightly lower, 1.50 bits. Finally, the set in Figure 4.5(f)"' has a large
number of card types, each represented only once, which leads to the high
entropy value of 3.58 bits.

This discussion highlights the fact that entropy is essentially a measure of
the heterogeneity of a set. As the composition of the sets changed from the
set with only one type of element (Figure 4.5(a)”") to a set with many differ-
ent types of elements each with an equal likelihood of being selected (Figure
4.5(f)™), the entropy score for the sets increased.

4.2.3 Information Gain

What is the relationship between a measure of heterogeneity of a set and pre-
dictive analytics? If we can construct a sequence of tests that splits the training
data into pure sets with respect to the target feature values, then we can label
queries by applying the same sequence of tests to a query and labeling it with
the target feature value of instances in the set it ends up in.

To illustrate this we’ll return to the spam dataset from Table 4.2"'. Figure
4.7" shows how the instances in the spam dataset are split when we partition
it using each of the three descriptive features. Looking at 4.7(a)!"”, we can see
that splitting the dataset based on the SUSPICIOUS WORDS feature provides a
lot of information about whether an email is spam or ham. In fact, partitioning
the data by this feature creates two pure sets: one containing only instances
with the target level spam and the other set containing only instances with the
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Figure 4.7

How the instances in the spam dataset split when we partition using each of the different descriptive
features from the spam dataset in Table 4.21,

target level ham. This indicates that the SUSPICIOUS WORDS feature is a good
feature to test if we are trying to decide whether a new email—not listed in the
training dataset—is spam or not.

What about the other features? Figure 4.7(b)"” shows how the UNKNOWN
SENDER feature partitions the dataset. The resulting sets both contain a mix-
ture of spam and ham instances. This indicates that the UNKNOWN SENDER
feature is not as good at discriminating between spam and ham emails as the
SUSPICIOUS WORDS feature. Although there is a mixture in each of these
sets, however, it seems to be the case that when UNKNOWN SENDER = true,
the majority of emails are spam, and when UNKNOWN SENDER = false, the
majority of emails are ham. So although this feature doesn’t perfectly discrim-
inate between spam and ham it does give us some information that we might
be able to use in conjunction with other features to help decide whether a new
email is spam or ham. Finally, if we examine the partitioning of the dataset
based on the CONTAINS IMAGES feature, Figure 4.7(c)"™, it looks like this
feature is not very discriminatory for spam and ham at all. Both of the result-
ing sets contain a balanced mixture of spam and ham instances.

What we need to do now is to develop a formal model that captures the
intuitions about the informativeness of these features described above. Unsur-
prisingly, we do this using Shannon’s entropy model. The measure of informa-
tiveness that we will use is known as information gain and is a measure of the
reduction in the overall entropy of a set of instances that is achieved by testing
on a descriptive feature. Computing information gain is a three-step process:
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1. Compute the entropy of the original dataset with respect to the target fea-
ture. This gives us an measure of how much information is required in order
to organize the dataset into pure sets.

2. For each descriptive feature, create the sets that result by partitioning the
instances in the dataset using their feature values, and then sum the entropy
scores of each of these sets. This gives a measure of the information that
remains required to organize the instances into pure sets after we have split
them using the descriptive feature.

3. Subtract the remaining entropy value (computed in step 2) from the original
entropy value (computed in step 1) to give the information gain.

We need to define three equations to formally specify information gain (one for
each step). The first equation calculates the entropy for a dataset with respect
to a target feature®

H(tD)=— Y (P(t=1) xlog(P(t=1))) (4.2)

IElevels(t)

where levels(t) is the set of levels in the domain of the target feature 7, and
P(t =) is the probability of a randomly selected instance having the target
feature level .

The second equation defines how we compute the entropy remaining after
we partition the dataset using a particular descriptive feature d. When we par-
tition the dataset D using the descriptive feature d we create a number of par-
titions (or sets) Dy—y, ... Dy=y,, where [y ...l are the k levels that feature d
can take. Each partition, Dy—;, contains the instances in D that have a value
of level [; for the d feature. The entropy remaining after we have tested d is
a weighted sum of the entropy, still with respect to the target feature, of each
partition. The weighting is determined by the size of each partition—so a large
partition should contribute more to the overall remaining entropy than a smaller
partition. We use the term rem (d, D) to denote this quantity and define it for-
mally as

D,y—
rem (d,D) = Z % X I‘L(I, D"i@ 4.3)

lelevels(d) entropy of
weighting  partition Dy—;

6 This is almost identical to the definition of Shannon’s entropy model given in Equation (4.1)"°.
We have extended the definition to include an explicit parameter for the dataset D for which we
are computing the entropy, and we have specified the base as 2.
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Using Equation (4.2)" and Equation (4.3)"¥, we can now formally define
information gain made from splitting the dataset D using the feature d as

IG (d, D) = H (1, D) — rem (d, D) (4.4)

To illustrate how information gain is calculated, and to check how well it mod-
els our intuitions described at the beginning of this section, we will compute
the information gain for each descriptive feature in the spam dataset. The first
step is to compute the entropy for the whole dataset using Equation (4.2)!":

HED) = — 3 (Pl=1) x loga(P(t = 1))
Ie{spam,ham}
— ((P(t = spam) x log>(P(t = spam))
+ (P(t = ham) x log>(P(t = ham)) )
= — (%5 x 10220 /6)) + (o x log2(/6) ) )
= 1 bit

The next step is to compute the entropy remaining after we split the dataset
using each of the descriptive features. The computation for the SUSPICIOUS
WORDS feature is’

rem (WORDS, D)
_ ( |DWORDS:tme|
D

|DWORDS:false‘
+ .
( D|

x H (t, DWORDS=tru€)>

x H (f, DWORDS—false))

Sex | = D) P(t=1) xloga(P(t =1))

le{spam,ham}

+3ex [ = D Plr=1)xloga(P(t=1))

le{spam,ham}

= (s x (= ((3 x 1020 /2)) + (/3 x 1og2°13)) ) ))
N (3/6 o <_ ((0/3 x log2(°/3)) + (3/3 x 1082(3/3)))»

= 0 bits

7 Note that we have shortened feature names in these calculations to save space.
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The remaining entropy for the UNKNOWN SENDER feature is

rem (SENDER, D)

D =
— (“m)% x H (t, DSENDER—true))

( |DSENDER=false|

D] x H (f, DSENDER—false))

~ex (= D Pa=0xiosap=1)

le{spam,ham}

+|ex [ = DL Ple=1) xloga(P(t=1))

le{spam,ham}

(Clox (= (Cfs xtoxa2)) + (13 x toga(15)))))

+ (3/6 x (— ((1/3 x 1082(1/3)) + (2/3 x 1082(2/3)))))
= 0.9183 bits

The remaining entropy for the CONTAINS IMAGES feature is

rem (IMAGES, D)

D. =
(W X H(l, DIMAGES=IVM£’)>

( |DIMAGEs:false|

D) x H (t, DIMAGES—false)>

= (%6 x |- Z P(t = 1) x loga(P(t = 1))

le{spam,ham}

+|Yex | = D Plt=1) xloga(P(t=1))
le{spam,ham}

(2o x (= ("2 x toga'12)) + (/2 x toga('2)))))

 (*o % (= ((Ma x toga®fa)) + (a x log2C/0)) ) ) )
=1 bit
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We can now complete the information gain calculation for each descriptive
feature as

IG (WORDS, D) = H (CLASS, D) — rem (WORDS, D)
=1-0
=1 bit

IG (SENDER, D) = H (CLASS, D) — rem (SENDER, D)
=1-09183
= 0.0817 bits

IG (IMAGES, D) = H (CLASS, D) — rem (IMAGES, D)
=1-1
= 0 bits

The information gain of the SUSPICIOUS WORDS feature is 1 bit. This is
equivalent to the total entropy for the entire dataset. An information gain score
for a feature that matches the entropy for the entire dataset indicates that the
feature is perfectly discriminatory with respect to the target feature values.
Unfortunately, in more realistic datasets, finding a feature as powerful as the
SUSPICIOUS WORDS feature is very rare. The feature UNKNOWN SENDER
has an information gain of 0.0817 bits. An information gain score this low sug-
gests that although splitting on this feature provides some information, it is not
particularly useful. Finally, the CONTAINS IMAGES feature has an information
gain score of 0 bits. This ranking of the features by information gain mirrors
the intuitions we developed about the usefulness of these features during our
earlier discussion.

We started this section with the idea that if we could construct a sequence of
tests that splits the training data into pure sets with respect to the target feature
values, then we can do prediction by applying the same sequence of tests to
the prediction queries and labeling them with the target feature of the set they
end up in. A key part of doing this is being able to decide which tests should
be included in the sequence and in what order. The information gain model we
have developed allows us to decide which test we should add to the sequence
next because it enables us to select the best feature to use on a given dataset.
In the next section, we introduce the standard algorithm for growing decision
trees in this way.
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4.3 Standard Approach: The ID3 Algorithm

Assuming that we want to use shallow decision trees, is there a way in which
we can automatically create them from data? One of the best known decision
tree induction algorithms is the Iterative Dichotomizer 3 (ID3) algorithm.®
This algorithm attempts to create the shallowest decision tree that is consistent
with the data given.

The ID3 algorithm builds the tree in a recursive, depth-first manner, begin-
ning at the root node and working down to the leaf nodes. The algorithm begins
by choosing the best descriptive feature to test (i.e., the best question to ask
first). This choice is made by computing the information gain of the descrip-
tive features in the training dataset. A root node is then added to the tree and
labeled with the selected test feature. The training dataset is then partitioned
using the test. There is one partition created for each possible test result, which
contains the training instances that returned that result. For each partition a
branch is grown from the node. The process is then repeated for each branch
using the relevant partition of the training set in place of the full training set
and with the selected test feature excluded from further testing. This process
is repeated until all the instances in a partition have the same target level, at
which point a leaf node is created and labeled with that level.

The design of the ID3 algorithm is based on the assumption that a correct
decision tree for a domain will classify instances from that domain in the same
proportion as the target level occurs in the domain. So, given a dataset D repre-
senting a domain with two target levels C| and C», an arbitrary instance from
the domain should be classified as being associated with target level C; with

‘—'Cﬂ and to target level C, with the probability I Cl|‘C2\

the probability i ‘i‘| FAEEE
where |Cy| and |C;| refer to the number of instances in D associated with Cj
and C, respectively. To ensure that the resulting decision tree classifies in the
correct proportions, the decision tree is constructed by repeatedly partitioning®
the training dataset, until every instance in a partition maps to the same target
level.

Algorithm 4.1"™ lists a pseudocode description of the ID3 algorithm.
Although the algorithm looks quite complex, it essentially does one of two

things each time it is invoked: it either stops growing the current path in the

8 This algorithm was first published in Quinlan (1986).
9 Hence the name Iterative Dichotomizer.
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tree by adding a leaf node to the tree, Lines 1-6, or it extends the current path
by adding an interior node to the tree and growing the branches of this node by
repeatedly rerunning the algorithm, Lines 7—13.

Algorithm 4.1 Pseudocode description of the ID3 algorithm.
Require: set of descriptive features d
Require: set of training instances D
1: if all the instances in D have the same target level C then
2:  return a decision tree consisting of a leaf node with label C
3: else if d is empty then
4:  return a decision tree consisting of a leaf node with the label of the
majority target level in D
5: else if D is empty then
6: return a decision tree consisting of a leaf node with the label of the
majority target level of the dataset of the immediate parent node
7: else

8. d[best] «— argmaxIG(d,D)
ded
9:  make a new node, Nodeg(p,,;], and label it with d [best]

10:  partition D using d [best]

11:  remove d [best] from d

12:  for each partition D; of D do

13: grow a branch from Nodeg[, to the decision tree created by rerun-
ning ID3 with D = D;

Lines 1-6 of Algorithm 4.1" control when a new leaf node is created in the
tree. We have already mentioned that the ID3 algorithm constructs the deci-
sion tree by recursively partitioning the dataset. An important decision to be
made when designing any recursive process is what the base cases that stop the
recursion will be. In the ID3 algorithm the base cases are the situations where
we stop splitting the dataset and construct a leaf node with an associated target
level. There are two important things to remember when designing these base
cases. First, the dataset of training instances considered at each of the interior
nodes in the tree is not the complete dataset; rather, it is the subset of instances
considered at its parent node that had the relevant feature value for the branch
from the parent to the current node. Second, once a feature has been tested, it
is not considered for selection again along that path in the tree. A feature will
only be tested once on any path in the tree, but it may occur several times in
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the tree on different paths. Based on these constraints, the algorithm defines
three situations where the recursion stops and a leaf node is constructed:

1. All the instances in the dataset have the same target feature level. In this
situation, the algorithm returns a single leaf node tree with that target level
as its label (Algorithm 4.1" Lines 1-2).

2. The set of features left to test is empty. This means that we have already
tested every feature on the path between the root node and the current node.
We have no more features we can use to distinguish between the instances,
so we return a single leaf node tree with the majority target level of the
dataset as its target level (Algorithm 4.1™ Lines 3-4).

3. The dataset is empty. This can occur when, for a particular partition of the
dataset, there are no instances that have a particular feature value. In this
case we return a single leaf node tree with the majority target level of the
dataset at the parent node that made the recursive call (Algorithm 4.1
Lines 5-6).

If none of these cases hold, the algorithm continues to recursively create
interior nodes, Lines 7—13 of Algorithm 4.1"'. The first step in creating an
interior node is to decide which descriptive feature should be tested at this node
(Line 8 of Algorithm 4.1™"). When we first mentioned the ID3 algorithm, we
stated that it tries to create the shallowest decision tree that is consistent with
the data given. The feature of the ID3 algorithm that biases it toward shallow
trees is the mechanism that it uses to determine which descriptive feature is
the most informative one to test at a new node. The ID3 algorithm uses the
information gain metric to choose the best feature to test at each node in the
tree. Consequently, the selection of the best feature to split a dataset on is based
on the purity, or homogeneity, of the resulting partitions in the datasets. Again,
remember that each node is constructed in a context consisting of a dataset of
instances containing a subset of the instances used to construct its parent node
and the set of descriptive features that have not been tested on the path between
the root node and parent node. As a result, the information gain for a particular
descriptive feature may be different at different nodes in the tree because it will
be computed on different subsets of the full training dataset. One consequence
of this is that a feature with a low information gain at the root node (when the
full dataset is considered) may have a high information gain score at one of
the interior nodes because it is predictive on the subset of instances that are
considered at that interior node.
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Once the most informative feature, d [best], has been chosen, the algorithm
adds a new node, labeled with the feature d [best], to the tree (Line 9). It
then splits the dataset that was considered at this node, D, into partitions,
D1, ..., Dy, according to the levels that d [best] can take, {/;,...,%} (Line 10).
Next, it removes the feature d [best] from the set of features considered for
testing later on this path in the tree; this enforces the constraint that a feature
can be tested only once on any particular path in the tree (Line 11). Finally, in
Lines 12 and 13, the algorithm grows a branch in the tree for each of the values
in the domain of d [best] by recursively calling itself for each of the partitions
created at Line 10. Each of these recursive calls uses the partition it is called
on as the dataset it considers and is restricted to selecting from the set of fea-
tures that have not been tested so far on the path from the root node. The node
returned by the recursive call to the algorithm may be the root of a subtree or
a leaf node. Either way, it is joined to the current node with a branch labeled
with the appropriate level of the selected feature.

4.3.1 A Worked Example: Predicting Vegetation Distributions

In this section we will work through an example to illustrate how the ID3 is
used to induce a decision tree. This example is based on ecological model-
ing, an area of scientific research that applies statistical and analytical tech-
niques to model ecological processes. One of the problems faced by ecolog-
ical management practitioners is that it is often too expensive to do large-
scale, high-resolution land surveys. Using predictive analytics, however, the
results of small-scale surveys can be used to create predictive models that
can be applied across large regions. These models are used to inform resource
management and conservation activities'?, such as managing the distribution
of animal species and vegetation across geographic regions. The descriptive
features used by these models are often features that can be automatically
extracted from digitized maps, aerial photographs, or satellite imagery—for
example, the elevation, steepness, color, and spectral reflection of the terrain,
and the presence or absence of features such as rivers, roads, or lakes.

Table 4.3 lists an example dataset from the ecological modeling domain.
In this example, the prediction task is to classify the type of vegetation that

11

10 See Guisan and Zimmermann (2000) and Franklin (2009) for an introduction to uses of pre-
dictive analytics in ecological modeling.

11 This artificially generated example dataset is inspired by the research reported in Franklin et al.
(2000).
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Table 4.3
The vegetation classification dataset.
1D STREAM SLOPE ELEVATION VEGETATION
1 false steep high chapparal

2 true moderate low riparian

3 true steep medium riparian

4 false steep medium chapparal

5 false flat high conifer

6 true steep highest conifer

7 true steep high chapparal

is likely to be growing in areas of land based only on descriptive features
extracted from maps of the areas. Ecological modelers can use information
about the type of vegetation that grows in a region as a direct input into their
animal species management and conservation programs because areas covered
in different types of vegetation support different animal species. By using a
predictive model that only requires features from maps, the ecological model-
ers can avoid expensive ground-based or aerial surveys. There are three types
of vegetation that should be recognized by this model. First, chapparal is a
type of evergreen shrubland that can be fire-prone. The animal species typi-
cally found in this vegetation include gray foxes, bobcats, skunks, and rabbits.
Second, riparian vegetation occurs near streams and is characterized by trees
and shrubs. It is usually home to small animals, including raccoons, frogs, and
toads. Finally, conifer refers to forested areas that contain a variety of tree
species (including pine, cedar, and fir trees), with a mixture of shrubs on the
forest floor. The animals that may be found in these forests include bears, deer,
and cougars. The type of vegetation in an area is stored in the target feature,
VEGETATION.

There are three descriptive features in the dataset. STREAM is a binary fea-
ture that describes whether or not there is a stream in the area. SLOPE describes
the steepness of the terrain in an area and has the levels flat, moderate, and
steep. ELEVATION describes the elevation of an area and has the levels low,
medium, high, and highest.

The first step in building the decision tree is to determine which of the three
descriptive features is the best one to split the dataset on at the root node. The
algorithm does this by computing the information gain for each feature. The
total entropy for this dataset, which is required to calculate information gain,
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Table 4.4

Partition sets (Part.), entropy, remainder (Rem.), and information gain (Info. Gain) by feature for
the dataset in Table 4.3,

Split by Partition Info.
Feature Level Part. Instances Entropy Rem. Gain
STREAM true D d.d3.dg.d 13000 0507 03060

false Dy dy,dyg,ds 0.9183
Sfat Ds ds 0.0
SLOPE moderate Dy dy 0.0 0.9793 0.5774
steep Ds d;,d3,dy,dg.dy 1.3710
low De d> 0.0
ELEVATION mec_hum s d.dy 1.0 0.6793 0.8774
high Dg dy,ds,dy 0.9183
highest Dy dg 0.0

is computed as

H (VEGETATION, D)

- Z P(VEGETATION = [) x logs (P(VEGETATION = [))

chapparal,
[eX riparian,

conifer
== (Crxtona () + (Crxtona (n)) + (1 xtosa (1) ))
= 1.5567 bits
4.5)

Table 4.4%' shows the calculation of the information gain for each feature using
this result.

We can see from Table 4.4 that ELEVATION has the largest information
gain of the three features and so is selected by the algorithm at the root node
of the tree. Figure 4.8™" illustrates the state of the tree after the dataset is split
using ELEVATION. Notice that the full dataset has been split into four partitions
(labeled D¢, D7, Dg, and Dy in Table 4.4*') and that the feature ELEVATION is
no longer listed in these partitions as it has already been used to split the data.
The D¢ and Dy partitions each contain just one instance. Consequently, they
are pure sets, and these partitions can be converted into leaf nodes. The D5
and Dy partitions, however, contain instances with a mixture of target feature
levels, so the algorithm needs to continue splitting these partitions. To do this,
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D6 ID | Stream | Stope | VEGETATION
2 true |moderate| riparian
ID | Stream | Srope | VEGETATION
D7| 3 true | steep | riparian
4 false | steep | chaparral
Figure 4.8

medium

high

D9

STREAM

SLopE

VEGETATION

6 true

steep

conifer

ID | StreAM | SroPE | VEGETATION
D8 1 false | steep | chaparral

5 false flat conifer

7 true steep | chaparral

The decision tree after the data has been split using ELEVATION.

Table 4.5

Partition sets (Part.), entropy, remainder (Rem.), and information gain (Info. Gain) by feature for

the dataset D7 in Figure 4.8,

Split by Partition Info.
Feature Level Part. Instances Entropy Rem. Gain
STREAM frue Pio ds 00 0.0 1.0
false D1 dy 0.0
fat Dy 0.0
SLOPE moderate D13 0.0 1.0 0.0
steep Dig d3,dy 1.0

the algorithm needs to decide which of the remaining descriptive features has

the highest information gain for each partition.

To address partition D7, first the algorithm computes the entropy of D7 as

H (VEGETATION, D7)

= - Z P(VEGETATION = [) x log, (P(VEGETATION = [))

chapparal,
[eX riparian,

conifer

== ((1/2 x logz(l/z)) + (1/2 x logz(l/z)) + (0/2 x log2(0/2)>)

= 1.0 bits

(4.6)

The information gained by splitting D7 for using STREAM and SLOPE is then

computed as detailed in Table 4.5
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l ID | Stream | Stope | VEGETATION l . . l ID | Stream | Stope | VEGETATION l
D6 — medium | high D9 -
2 true  |moderate| riparian ] 6 true steep conifer ]
STREAM | SLOPE | VEGETATION
1 false | steep | chaparral
5 false flat conifer
7 true steep | chaparral
l ID | Stope | VEGETATION l l ID | Stope | VEGETATION l
D10 — D11
[ 3 | steep riparian ] [ 4 | steep | chaparral ]

Figure 4.9
The state of the decision tree after the D7 partition has been split using STREAM.

The calculations in Table 4.5* show that STREAM has a higher information
gain than SLOPE and so is the best feature with which to split D;. Figure
4.9 depicts the state of the decision tree after the D7 partition has been split.
Splitting D7 creates two new partitions (D1g and Dj1). Notice that SLOPE is
the only descriptive feature that is listed in D¢ and Dj;. This reflects the fact
that ELEVATION and STREAM have already been used on the path from the
root node to each of these partitions and so cannot be used again. Both of these
new partitions are pure sets with respect to the target feature (indeed, they only
contain one instance each), and consequently, these sets do not need to be split
any further and can be converted into leaf nodes.

At this point Dg is the only partition that is not a pure set. There are two
descriptive features that can be used to split Dg: STREAM and SLOPE. The
decision regarding which of these features to split on is made by calculating
which feature has the highest information gain for Dg. The overall entropy for
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Table 4.6

Partition sets (Part.), entropy, remainder (Rem.), and information gain (Info. Gain) by feature for
the dataset Dg in Figure 4.9,

Split by Partition Info.
Feature Level Part. Instances Entropy Rem. Gain
STREAM frue Dis & 00 0.6666 02517
false D16 d,ds 1.0
flat D17 ds 0.0

SLOPE moderate Dig 0.0 0.0 0.9183
steep Diog d;,d; 0.0

Dy is calculated as

H (VEGETATION, Dg)

=— Z P(VEGETATION = [) x log, (P(VEGETATION = [))

chapparal,
leX riparian,

conifer

(213 t0g2213) + (°fs x t0g2*/5)) + (/3 x toga (/) )

= 0.9183 bits
4.7)
Table 4.6” details the calculation of the information gain for each descriptive
feature in Dg using this result. It is clear from Table 4.6 that in the context
of Dg, SLOPE has a higher information gain than STREAM.

Figure 4.10%" illustrates the state of the decision tree after Dg has been split.
Notice that one of the partitions created by splitting Dg based on SLOPE is
empty: Dig. This is because there were no instances in Dg that had a value
of moderate for the SLOPE feature. This empty partition will result in a leaf
node that returns a prediction of the majority target level in Dg, chapparal. The
other two partitions created by splitting Dg are pure with respect to the target
feature: D17 contains one instance with a conifer target level, and D19 contains
two instances, both of which have a chapparal target level.

At this point all the remaining partitions are pure with respect to the target
feature. Consequently, the algorithm now converts each partition into a leaf
node and returns the final decision tree. Figure 4.11%" shows this decision tree.
If the prediction strategy encoded in this tree is applied to the original dataset in
Table 4.3, it will correctly classify all the instances in the dataset. In machine
learning terms, the induced model is consistent with the training data.
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b6 l ID ‘ STREAM ‘ StopE | VEGETATION l hih ID ‘ STREAM ‘ SropE ‘ VEGETATION l

[ 2 [ true Imodcmlc[ riparian ] ¢ [ 6 [ true [ steep [ conifer ]
D]Ol D ‘ Store ‘ 'VEGETATION l - l D ‘ Stope ‘ VEGETATION l
[ 3 [ steep [ riparian ] [ 4 [ steep [ chaparral ]

ID | StrEAM | VEGETATION

ID | Stream | VECETATION ID | Stream | VECETATION

D17 DI9| 1 false chaparral

true chaparral

conifer

<

Figure 4.10
The state of the decision tree after the Dg partition has been split using SLOPE.

ELEvATION

low /medium\high \ highest

riparian SrrEAM Store conifer
true [false flat moderate steep
riparian chaparral conifer chaparral chaparral
Figure 4.11

The final vegetation classification decision tree.
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One final point: remember that the empty partition in Figure 4.10%” (Dy3)
has been converted into a leaf node that returns the chapparal target level. This
is because chapparal is the majority target level in the partition at the parent
node (Dg) of this leaf node. Consequently, this tree will return a prediction of
VEGETATION = chapparal for the following query:

STREAM = true, SLOPE = moderate, ELEVATION = high

This is interesting because there are no instances listed in Table 4.3"* where
SLOPE = moderate and VEGETATION = chapparal. This example illustrates
one way in which the predictions made by the model generalize beyond the
dataset. Whether the generalizations made by the model are correct will depend
on whether the assumptions used in generating the model (i.e., the inductive
bias) are appropriate.

The ID3 algorithm works in exactly the same way for larger, more compli-
cated datasets; there is simply more computation involved. Since it was first
proposed, there have been many modifications to the original ID3 algorithm to
handle variations that are common in real-world datasets. We explore the most
important of these modifications in the following sections.
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